Trade and Inequality: From Theory to Estimation

ELHANAN HELPMAN OLEG ITSKHOKI MARC MUENDLER STEPHEN REDDING Harvard Princeton UC San Diego Princeton

August 2015

Motivation

- Neoclassical trade theory (H-O, SF, R)
 - sector-level comparative advantage
 - focus on "between" effects
- New trade theory
 - Krugman: intra-industry trade
 - Melitz: firm-level comparative advantage
 - focus on "**within**" effects
- Trade and inequality
 - Heavily influenced by H-O framework
 - Empirically has limited explanatory power
- "New view" of trade and inequality
 - link wages to firm performance
 - within-industry, between-firm

This Paper

- Uses linked employee-employer data for Brazil from 1986-98
 - Distribution of wages across workers and firms
 - Firm trade participation
- Establishes stylized facts about Brazilian wage inequality
 - within sector-occupations
 - for workers with similar observables (residual inequality)
 - between firms
- Develops a structural model to quantify the role of firm heterogeneity in wage inequality
 - extension of HIR (2010)
 - a model of within-sector, between-firm residual inequality
 - wages and employment vary with firm productivity and trade participation

Related Literature

- Long and large tradition in labor literature
- "New view" empirics:
 - Bernard and Jensen (1995)...
 - Verhoogen (2008)
 - Amity and Davis (2011)
 - AKM (1999) estimation used in trade context
- "New view" theory:
 - Feenstra and Hanson (1999)...
 - Yeaple (2005)...
 - Egger and Kreickemeier (2009)
 - HIR (2010)...

DATA

Brazilian RAIS Data

- Matched employer-employee data from 1986–1998
 - All workers employed in the formal sector
 - Focus on the manufacturing sector
 - Observe firm, industry and occupation
 - Observe worker education (high school, college degree), demographics (age, sex) and experience (employment history)
 - 5 aggregate and 350 disaggregate occupations
 - 13 aggregate and (from 1994) 250 disaggregate sectors
- Over the period 1986-1998 as a whole, our sample includes more than 7 million workers and 100,000 firms in every year
- Trade transactions data from 1986-1998
 - Merged with the matched employer-employee data
 - Observe firm exports and export products and destinations

STYLIZED FACTS

Within and Between Inequality

Sector-occupation bins

	Level (%)	Change (%)
A. Main Period	1994	1986–95
Within occupation	82	92
Within sector	83	73
Within sector-occupation	68	66
Within detailed-occupation	61	60
Within sector-detailed-occupation	56	54
B. Late Period	1994	1994–98
Within detailed-sector		
detailed-occupation	47	141

Fact 1

Within sector-occupation component of wage inequality accounts for over 2/3 of both level and growth of wage inequality

Residual Inequality

Conditional on worker observables

	Level (%) 1994	Change (%) 1986–95
Residual wage inequality	59	49
— within sector-occupation	89	91

Fact 2

(i) Residual inequality is at least as important as worker observables for both level and growth of wage inequality(ii) Almost all residual inequality is within sector-occupations

Between-firm Inequality

Mincer log-wage regression with firm fixed effect:

$$w_{it} = z'_{it}\vartheta_{\ell t} + \psi_{j\ell t} + \nu_{it}$$

- *i* worker
- *j* firm
- ℓ sector-occupation bin
- $\psi_{j\ell t}$ firm fixed effect includes:
 - Returns to unobserved skill (workforce composition)
 - Worker rents (differences in wage for same workers)
 - Match effects
- Decomposition of within inequality:
 - Observables: $var(z'_{it}\hat{\vartheta}_{\ell t})$
 - Between-firm component: $var(\hat{\psi}_{j\ell t})$
 - Covariance: $\operatorname{cov}(z_{it}'\hat{\vartheta}_{\ell t},\hat{\psi}_{j\ell t})$
 - Within-firm component: $var(\hat{\nu}_{it})$

Between-firm Inequality

Within sector-occupation bins

	UNCONDITIONAL FIRM WAGE COMPONENT, $\psi_{j\ell t}^U$		FIRM WAGE FIRM WAGE		M WAGE
	Level (%) 1994	Change (%) 1986–1995	Level (%) 1994	Change (%) 1986–1995	
Between-firm wage inequality	55	115	39	86	
Within-firm wage inequality	45	-15	37	-11	
Worker observables			13	2	
Covar observables-firm effect	S		11	24	

Fact 3

Between-firm component account for about half of level and the majority of growth of within sector-occupation wage inequality

Between-firm Inequality

Size and exporter wage premia

	UNCONDITIONAL FIRM WAGE COMPONENT, $\hat{\psi}^U_{jt}$	CONDITIONAL FIRM WAGE COMPONENT, $\hat{\psi}_{jt}^{C}$
Firm Employment Size	0.122*** (0.010)	0.104 ^{***} (0.009)
Firm Export Status	0.262*** (0.042)	0.168*** (0.024)
Sector Fixed Effects Within R-squared	yes 0.17	yes 0.13
Observations	91,410	91,410

Fact 4

Larger firms on average pay higher wages; exporters on average pay higher wages even after controlling for size. The remaining variation in wages is substantial.

STRUCTURAL MODEL

Model: Extension of HIR

1 Melitz (2003) product market:

$$R = \Upsilon A y^eta, \qquad \Upsilon \in \{1, \Upsilon_x > 1\}$$

2 Heterogeneity in fixed cost of exports: $e^{\varepsilon}F_{x}$

8 Complementarity between productivity and worker ability:

$$y = e^{\theta} H^{\gamma} \bar{a}, \qquad \gamma < 1$$

4 Unobserved heterogeneity and costly screening:

$$e^{-\eta}Crac{(a_c)^{\delta}}{\delta} \qquad \Rightarrow \qquad ar{a} = rac{k}{k-1}a_c$$

5 DMP search friction (cost **b** per worker) and wage bargaining:

$$W = \frac{\beta \gamma}{1 + \beta \gamma} \frac{R}{H} = \mathbf{b} \cdot (\mathbf{a}_c)^k$$

Econometric Model

• Empirical model of $X_j = \{h_j, w_j, \iota_j\}_j$:

$$\begin{cases} h_j = \alpha_h + \mu_h \cdot \iota_j + u_j, \\ w_j = \alpha_w + \mu_w \cdot \iota_j + \zeta u_j + v_j, \\ \iota_j = \mathbb{I}\{z_j \ge f\} \end{cases}$$

• Distributional assumption:

$$(u_j, v_j, z_j)' \sim \mathcal{N}(\mathbf{0}, \Sigma), \qquad \Sigma = \begin{pmatrix} \sigma_u^2 & 0 \\ 0 & \sigma_v^2 & \rho_u \cdot \sigma_u & \rho_v \cdot \sigma_v & 1 \end{pmatrix}$$

- Selection (ρ_u, ρ_v) versus Market access (μ_h, μ_w)
- Theoretical restriction: $\mu_h, \mu_w > 0$

Identification

Maximum Likelihood

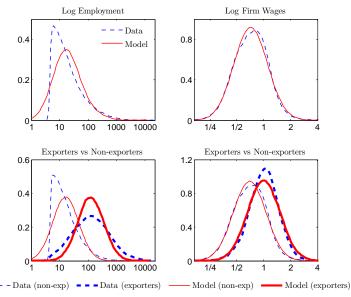
— under additional orthogonality assumption between structural productivity shocks θ and η :

$$\zeta \leq \frac{\mu_{w}}{\mu_{h}} \leq \zeta + \frac{\sigma_{v}^{2}}{(1+\zeta)\sigma_{u}^{2}}$$

2 GMM Bounds

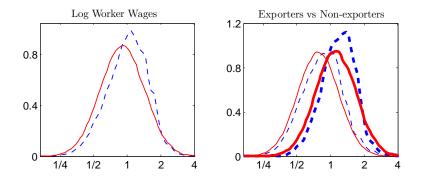
- based on a subset of moments

3 Semi-parametric estimation


— using alternative instruments for export participation

RESULTS

Coefficient Estimates 1994


	Coefficient	STD Error
μ_h	1.992	0.019
μ_{w}	0.197	0.022
ρ_u	0.023	0.004
ρ_{v}	0.199	0.024
f	1.341	0.006

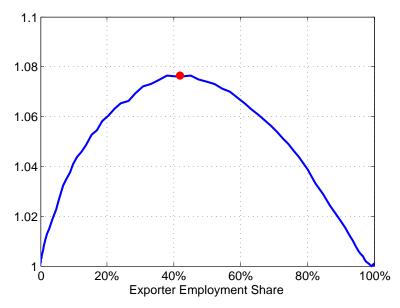
Note: Maximum likelihood estimates and robust (sandwich-form) asymptotic standard errors (see the online supplement) for 1994. Number of observations (firms): 91,410.

Employment and Wage Distributions

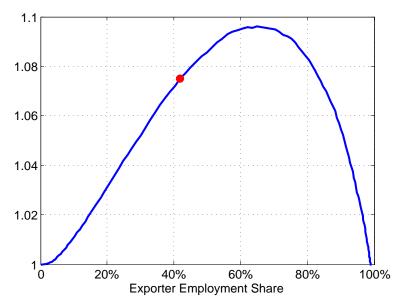
Worker Wage Distribution

Counterfactuals

Estimated model:

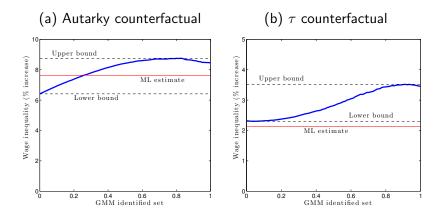

$$\begin{cases} h_j = \alpha_h + \mu_h \cdot \iota_j + u_j, \\ w_j = \alpha_w + \mu_w \cdot \iota_j + \zeta u_j + v_j, \\ \iota_j = \mathbb{I}\{z_j \ge f\} \end{cases} \quad (u_j, v_j, z_j)' \sim \mathcal{N}(\mathbf{0}, \Sigma) \end{cases}$$

• Parameters (μ_h , μ_w , f) form a sufficient statistic:


$$f = \frac{1}{\sigma} \left[\alpha_f + \log F_x - \log \left(\Upsilon_x^{\frac{1-\beta}{\Gamma}} - 1 \right) \right]$$
$$\mu_h + \mu_w = \Upsilon_x^{\frac{1-\beta}{\Gamma}}, \qquad \Upsilon_x = 1 + \tau^{-\frac{\beta}{1-\beta}} \frac{A_x}{A_d}$$

• Two counterfactuals: variation in F_x and au

Variation in Fixed Export Cost



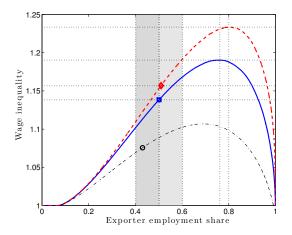
Variation in Variable Trade Cost

GMM BOUNDS

GMM Bounds

- Autarky bounds: [6.6%, 9.0%] vs ML estimate 7.6%
- τ bounds: [2.3%, 3.5%] vs ML estimate 2.2%

Semi-parametric


Two-stage estimation

	BUSINESS]	Foreign Worki	ERS	Both Excluded
	Procedures	Firm	Meso	Layoff	VARIABLES
	(1)	(2)	(3)	(4)	(5)
Panel A: Selection					
Business Procedures	$^{-0.139^{***}}_{(0.025)}$	_	_	_	$^{-0.139^{***}}_{(0.025)}$
Foreign Worker	_	0.070 ^{***} (0.008)	0.129*** (0.034)	0.022** (0.010)	0.019* (0.010)
First-stage <i>F</i> -statistic [<i>p</i> -value]	30.60 [0.000]	85.96 [0.000]	14.56 [0.000]	4.36 [0.037]	37.36 [0.000]
Panel B: Employment					
Employment premium (μ_h)	2.004*** (0.031)	1.997*** (0.034)	2.032*** (0.034)	2.039*** (0.033)	2.012*** (0.032)
Second-stage <i>F</i> -statistic [<i>p</i> -value]	16.57 [0.000]	.83.40 [0.000]	2.69 [0.045]	2.18 [0.088]	14.37 [0.000]
Panel C: Wages					
Wage premium (μ_w)	0.361*** (0.016)	0.343 ^{***} (0.015)	0.312*** (0.012)	0.356*** (0.016)	0.361*** (0.017)
Second-stage <i>F</i> -statistic [<i>p</i> -value]	4.07 [0.007]	.59.70 [0.000]	171.67 [0.000]	2.30 [0.075]	4.00 [0.007]

MULTIDESTINATION

Multidestination Model

Counterfactuals

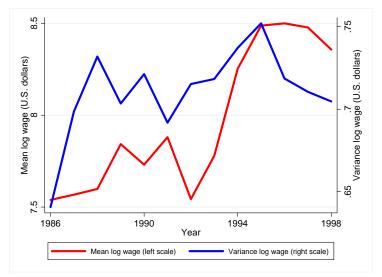
Conclusions

- Neoclassical trade theory emphasizes wage inequality between occupations and industries
- In contrast, new theories of firm heterogeneity and trade point to wage dispersion within occupations and industries
- Using matched employer-employee data for Brazil, we show:
 - Much of the increase in wage inequality since the mid-1980s has occurred within sector-occupations
 - Increased within-group wage inequality
 - Increased wage dispersion between firms
 - Between-firm wage dispersion related to trade participation
- Develop a framework for the structural estimation of a model with firm heterogeneity and wage dispersion across firms
- Use this framework to quantify the effect of trade on wage dispersion

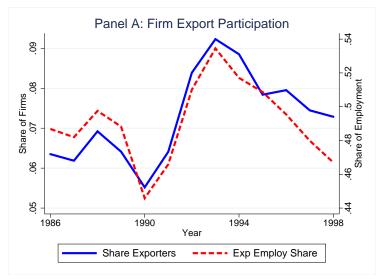
Model Predictions

• A firm with idiosyncratic shock $\{\theta, \eta, \varepsilon\}$:

$$R(\theta,\eta,\varepsilon) = \kappa_{r} \Upsilon^{\frac{1-\beta}{\Gamma}} \left(e^{\theta}\right)^{\frac{\beta}{\Gamma}} \left(e^{\eta}\right)^{\frac{\beta(1-\gamma k)}{\delta\Gamma}} H(\theta,\eta,\varepsilon) = \kappa_{h} \Upsilon^{\frac{(1-\beta)(1-k/\delta)}{\Gamma}} \left(e^{\theta}\right)^{\frac{\beta(1-\kappa/\delta)}{\Gamma}} \left(e^{\eta}\right)^{\frac{\beta(1-\gamma k)(1-k/\delta)}{\delta\Gamma} - \frac{k}{\delta}} W(\theta,\eta,\varepsilon) = \kappa_{w} \Upsilon^{\frac{k(1-\beta)}{\delta\Gamma}} \left(e^{\theta}\right)^{\frac{\beta k}{\delta\Gamma}} \left(e^{\eta}\right)^{\frac{k}{\delta} \left(1 + \frac{\beta(1-\gamma k)}{\delta\Gamma}\right)}$$


• Market access variable

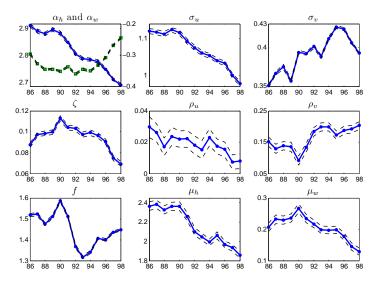
$$\Upsilon = 1 + \iota \cdot \big(\Upsilon_x - 1\big), \qquad \Upsilon_x = 1 + \tau^{-\frac{\beta}{1-\beta}} \frac{A_x}{A_d}$$


Selection into exporting

$$\iota = \iota(\theta, \eta, \varepsilon) = \mathbb{I}\left\{\kappa_{\pi}\left(\Upsilon_{x}^{\frac{1-\beta}{\Gamma}} - 1\right)\left(e^{\theta}\right)^{\frac{\beta}{\Gamma}}\left(e^{\eta}\right)^{\frac{\beta(1-\gamma k)}{\delta\Gamma}} \geq F_{x}e^{\varepsilon}\right\}$$

Wage Inequality

Trade Openness


Regional Robustness

	OVERALL INEQUALITY			RESIDUAL INEQUALITY	
	Level 1994	Change 1986–95	Level 1994	Change 1986–95	
Within sector-occupation	68	66	89	91	
Within sector-occupation, São Paulo	64	49	89	71	
Within sector-occupation-state	58	38	76	56	
Within sector-occupation-meso	54	30	72	49	

▲ Back to slides

Estimation Results

Parameters

Model Fit

Firm-level moments

	All firms	Non-exp.	Exporters
		Data	
Mean <i>h</i>	2.96	2.78	4.82
Mean <i>w</i>	-0.33	-0.37	-0.01
Std deviation h	1.20	1.00	1.46
Std deviation w	0.43	0.43	0.38
Correlation h & w	0.33	0.24	0.32
Fraction of exporters	9.0%		
		Model	
Mean <i>h</i>	2.96	2.78	4.83
Mean <i>w</i>	-0.33	-0.37	0.00
Std deviation h	1.20	1.05	1.05
Std deviation w	0.43	0.42	0.42
Correlation h & w	0.32	0.25	0.24
Fraction of exporters	9.0%		

Model Fit

Worker wage dispersion

	Data	Model
Std deviation	0.42	0.46
 non-exporters 	0.42	0.42
— exporters	0.35	0.42
Gini coefficient	0.23	0.25
90/10-ratio	2.95	3.23
<u> </u>	1.63	1.80
— 50/10	1.81	1.80

Model Fit

Worker wage dispersion

	Data	Model
Std deviation	0.42	0.46
 non-exporters 	0.42	0.42
— exporters	0.35	0.42
Gini coefficient	0.23	0.25
90/10-ratio	2.95	3.23
<u> </u>	1.63	1.80
— 50/10	1.81	1.80

Size and exporter wage premia

	Data	Model
Employment premium	0.10	0.10
Exporter premium	0.16	0.16
<i>R</i> -squared	0.11	0.11

Likelihood Function

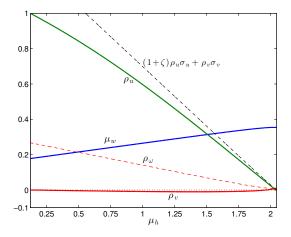
$$\mathcal{L}(\Theta|X_j) = \prod_j \mathbb{P}\{(h_j, w_j, \iota_j)|\Theta\}$$

$$\mathbb{P}\{(h_j, w_j, \iota_j)|\Theta\} = \frac{1}{\sigma_u}\phi(\hat{u}_j)\frac{1}{\sigma_v}\phi(\hat{v}_j)\left[\Phi\left(\frac{f-\rho_u\hat{u}_j-\rho_v\hat{v}_j}{\sqrt{1-\rho_u^2-\rho_v^2}}\right)\right]^{1-\iota_j}\left[1-\Phi\left(\frac{f-\rho_u\hat{u}_j-\rho_v\hat{v}_j}{\sqrt{1-\rho_u^2-\rho_v^2}}\right)\right]^{\iota_j}$$

$$\hat{u}_{j} = \frac{h_{j} - \alpha_{h} - \mu_{h}\iota_{j}}{\sigma_{u}},$$
$$\hat{v}_{j} = \frac{(w_{j} - \alpha_{w} - \mu_{w}\iota_{j}) - \zeta(h_{j} - \alpha_{h} - \mu_{h}\iota_{j})}{\sigma_{v}}$$

▲ back to slides

GMM Bounds


- We drop the orthogonality assumption and use the following set of moments:
 - (a) conditional first moments: $\mathbb{E}\iota$, $\mathbb{E}\{h|\iota\}$ and $\mathbb{E}\{w|\iota\}$
 - (b) unconditional second moments: var(h), var(w) and cov(h, w)
 - (c) size and exporter wage premia λ_s and λ_x , and R^2 from:

$$\mathbb{E}\{w|h,\iota\} = \lambda_0 + \lambda_s h + \lambda_s \iota$$

- In addition, we impose $|\rho_u|, |\rho_v| < 1$ and $\sigma_u, \sigma_v > 0$
- and $\operatorname{corr}((1+\zeta)u+v,z) = (1+\zeta)\rho_u\sigma_u + \rho_v\sigma_v > 0$
- We check that $\mu_h, \mu_w > 0$
- This identifies a uni-dimensional interval in the 10-dimensional parameter space, the GMM identified set
- For each element of this set we conduct: (a) autarky and (b) variable trade cost counterfactual:
 - $\tau\uparrow$ to generate a 10p.p.] in exporter employment share

GMM Identified Set

• Main idea:
$$\bar{h}_1 - \bar{h}_0 = \mu_h + \rho_u \sigma_u (\lambda_1 - \lambda_0)$$

Multidestination Model

$$\begin{cases} h = \alpha_h + \mu_{h,1}\iota_1 + (\mu_{h,2} - \mu_{h,1})\iota_2 + (\mu_{h,3} - \mu_{h,2})\iota_3 + u, \\ w = \alpha_w + \mu_{w,1}\iota_1 + (\mu_{w,2} - \mu_{w,1})\iota_2 + (\mu_{w,3} - \mu_{w,2})\iota_3 + \zeta u + v, \\ \iota_\ell = \mathbb{I}\left\{f_{\ell-1} \le z \le f_\ell\right\}, \quad \ell = 1, 2, 3, \end{cases}$$

$$\begin{split} \mu_{h,\ell} &= \frac{\delta - k}{\delta} \log \Upsilon_{x,\ell}^{\frac{1-\beta}{\Gamma}}, \qquad \mu_{w,\ell} = \frac{k}{\delta - k} \mu_{h,\ell}, \\ f_{\ell} &= \frac{1}{\sigma} \Big[-\alpha_{\pi} + \log F_{x,\ell} - \log \Big(\Upsilon_{x,\ell}^{\frac{1-\beta}{\Gamma}} - \Upsilon_{x,\ell-1}^{\frac{1-\beta}{\Gamma}} \Big) \Big], \\ \Upsilon_{x} &= 1 + \tau^{-\frac{\beta}{1-\beta}} \sum_{\ell=1,2,3} \iota_{\ell} \left(\frac{A_{x,\ell}}{A_{d}} \right)^{\frac{1}{1-\beta}} \\ \iota_{\ell} &= \mathbb{I} \left\{ \kappa_{\pi} \left[\Upsilon_{x,\ell}^{\frac{1-\beta}{\Gamma}} - \Upsilon_{x,\ell-1}^{\frac{1-\beta}{\Gamma}} \right] \left(e^{\theta} \right)^{\frac{\beta}{\Gamma}} \left(e^{\eta} \right)^{\frac{\beta(1-\gamma k)}{\delta \Gamma}} \ge e^{\varepsilon} F_{x,\ell} \right\}, \qquad \ell = 1,2,3 \end{split}$$

back to slides

Sectors

	Industry	Empl't	Rel. mean	Fraction	Exporter
	2	share (%)	log wage	Exporters	Empl't %
2	Non-metallic mineral products	5.5	-0.12	2.3	32.3
3	Metallic products	9.8	0.27	6.1	49.9
4	Machinery, equipment & instr.	6.6	0.38	12.3	54.1
5	Electrical & telecomm. equip.	6.0	0.37	11.8	56.3
6	Transport equipment	6.3	0.61	11.2	70.6
7	Wood products & furniture	6.5	-0.48	3.2	23.5
8	Paper, publishing & printing	5.4	0.14	2.5	30.6
9	Rubber, tobacco, leather & fur	7.0	-0.04	8.6	50.8
10	Chemical & pharma. products	9.9	0.40	11.2	50.6
11	Apparel & textiles	15.7	-0.32	2.5	34.8
12	Footwear	4.4	-0.44	12.2	65.7
13	Food, beverages & alcohol	16.9	-0.30	3.9	38.0

• Twelve aggregate sectors (IBGE) 1986-1998

• More than 250 disaggregated industries (CNAE) 1994-1998

Occupations

• Five aggregate occupations 1986-1998

	Occupation	Employment	Relative mean
		share (%)	log wage
1	Professional and Managerial	7.8	1.08
2	Skilled White Collar	11.1	0.40
3	Unskilled White Collar	8.4	0.13
4	Skilled Blue Collar	57.4	-0.15
5	Unskilled Blue Collar	15.2	-0.35

• More than 300 disaggregated occupations (CBO) 1986-1998